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Thermodynamic Exergy

Thermodynamic exergy measures the useful work

done by a system
Provides the a full representation of all work (i.e., thermal, mechanical,
Kinetic, potential) done by a system

Rockets and spacecraft are thermodynamic
systems

Exergy Efficiency provides a full characterization

of avehicle’s performance
Provides a meaningful system characteristic to understand
system interactions across multiple disciplines, subsystems and
scales
Provides the ability to compare different systems performing
similar missions



Exergy Balance
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Simplifies to Orbital energy relationship during coast phases
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Reference State

Reference state is determined by:
Vacuum of space (pressure, accounted for in engine Isp)

Thermal (Solar irradiance and planetary reflections) (assumed controlled by tank
insulation and not considered in this model)

Solar and planetary gravitational effects

Planetary motions and masses contribute significant exergy to the rocket not provided by the
rocket propulsion
Vehicle potential energy reference changes with respect to the planets and sun

Solar dominates outside the sphere of influence (SOI) for any planet

Planet dominates inside its SOI, where the SOI radius is given as:
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Mission Design
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This trajectory contains four main burns:
Trans-Mars injection (TMI),
Mars orbit insertion (MOI),
Trans-Earth injection (TEI), and
Earth orbit insertion (EQOI).

Four different propulsion systems were analyzed
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Low enriched uranium (LEU) liquid hydrogen (LH2) nuclear thermal propulsion (NTP),

High enriched uranium (HEU) LH2 NTP,
LEU CH4 (methane) NTP, and
Chemical liquid oxygen (LO2)/LH2 system.



Engine and Thruster Characteristics

Main Engine Characteristics (Thrust/lsp Given)

mpropellant = Tengine/(lspgo)
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RCS Characteristics

Typical RCS values
m =7 kg/s
I, =291 s
RCS burns are 40 m/s, fully tangential



TMI, First 500's

RCS burns noticeably effect Exergy Efficiency
Much lower Isp than main engines
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Equations of position and motion relative to planetary horizons
approaching SOI from interplanetary space

rvehicle,planet = Tvehicle,sun — r’planet,sun
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Interplanetary to Planetary Reference Frame Transform
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Planetary Orbit Entry Conditions
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Planetary Parking-Orbit

Parking Orbit Parameters

Periapsis = 400 km above planetary surface
Well above atmospheric drag at Earth (similar to ISS) or Mars
Note aero-braking would require a lower periapsis on arrival (not addressed in these
calculations)

‘r' . .
_ __ "periapsis
€trans fer — 1

Atransfer
_ 2 1
Vperiapsis,transfer - \/ :uplanet <rperiapsis - atransfer)
Vperiapsis,parking = Vperiapsis,transfer — AV

2
o . _ 1/ < 2 ) . Vperiapsis,parking
parking Tperiapsis Uplanet

. _ —1— Tperiapsis,parking
parking 7

1+eparking)

1-eparking

rapoapsis = rperiapsis (

2
atransfer(l_etransfer)_TSOI
Tsol€transfer

Oso; = acos(

Apoapsis should be checked to ensure it stays within SOI.
Can iteratively solve the above equations stepping the apoapsis closer to the planet to achieve
needed apoapsis.
AV point thrust performed at SOl boundary to rotate flight path from hyperbolic transfer orbit
to planetary parking orbit (i.e., patched conic solution)



Parking Orbit burns calculated looking at vehicle position
and velocity to maintain desired orbital trajectory with SOI
Intersection point

Tf =Ti + VlAt + %VlAtz
V=V, + VAt

Both departure parking orbits to SOl and arrival parking
orbits can be calculated following this approach (forward
to SOI or backward from SOI)

Helio-Centric Parameters can be calculated from the
planetary equatlons as

-

vehicle planet)

vehlcle sun — planet sun + (TTransform
- -
Vvehicle,sun planet,sun (TTransform vehicle planet)



Vehicle Exergy
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Vehicle Change In Exergy
AKEstep= |mef iVizl

ri rr
Where S is sign given from table on previous chart

Thrust Exergy
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Vehicle Exergy Balance
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Results

Nexg foughly scales directly with I, and inversely with total vehicle
Initial mass

RCS modifications roughly double final efficiency and increase
variation by almost an order of magnitude

LEU LH2 NTP HEU LH2 NTP LEU CH4 NTP CHM LOX-LH2
Nexg (Max) 47.63% 47.68% 41.20% 31.83%

Nexg (total) 10.61% 10.62% 9.69% 8.18%



Conclusions

Exergy Efficiency provides a system integration relationship for a

spacecraft

Provides a direct comparison of different types of vehicle systems
LEU LH2 NTP (most efficient)
HEU LH2 NTP (very close to LEU)
LEU CH4 NTP (good efficiency)
Chemical (LO2/LH2) (notably lower efficiency)

Provides an understanding of the main drivers in system efficiency including
effects from the environment (Thermal, Vacuum, Gravity)
Exergy Efficiency provides a key Measure of Performance (MoP)

for the interplanetary transfer system
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